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Adaptive Tracking Control of A Class of First-Order
Systems With Binary-Valued Observations
and Time-Varying Thresholds

Jin Guo, Ji-Feng Zhang, and Yanlong Zhao

Abstract—This technical note studies the adaptive tracking control for
a class of single parameter systems with binary-valued observations and
time-varying thresholds. A projection algorithm is proposed for parameter
identification, based on which an adaptive control law is designed via the
certainty equivalence principle. By use of the conditional expectation of the
binary-valued observations with respect to the estimates, it is shown that
the identification algorithm is both almost surely and mean square conver-
gent, the closed-loop system is stable, and the adaptive tracking control is
asymptotically optimal. A numerical example is given to demonstrate the
effectiveness of the algorithms and the main results obtained.

Index Terms—Adaptive control, binary-valued observation, optimal
tracking, parameter identification, stochastic system.

I. INTRODUCTION

Recently, a class of widely used limited-information systems—set-
valued observation systems have attracted a lot of attention ([1]-[6]).

Manuscript received November 10, 2010; March 04, 2011; accepted March
04, 2011. Date of publication July 14, 2011; date of current version December
07, 2011. The work was supported by the National Natural Science Foundation
of China under Grants 60934006 and 6657100 and the Special Foundation of
President of the Chinese Academy of Sciences under Grant 4581900. Recom-
mended by Associate Editor X. Xia.

The authors are with the Key Laboratory of Systems and Control, Institute
of Systems Science, Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, Beijing 100190, China (e-mail: guojin@amss.ac.cn,
jif@iss.ac.cn, ylzhao@amss.ac.cn).

Color versions of one or more of the figures in this technical note are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2011.2161836

2991

The controlled output of such systems cannot be measured, what can
be measured and used for designing controller is whether or not the
output belongs to some known set. An epitome of such systems is the
binary-valued one ([3], [4]) whose observation space is consisted of
two sets, which is tied up with the threshold that may be fixed ([3]) or
time-varying ([4]). The observation only tells us the size relationship
between the observation and the threshold.

Binary-valued observation system is very common in practical
systems due to the widespread use of binary-valued sensors, such as
photoelectric sensors for positions, Hall-effect sensors for speed and
acceleration, EGO oxygen sensors in automotive emission control,
a one-bit quantizer in analog-to-digital conversion, etc. ([3], [4],
[7]1-[9]). In particular, the theory of binary-valued observation sys-
tems with time-varying thresholds can be applied to wireless sensor
networks (WSNs) ([5], [6]), which have received much concern due
to their potential applications in military surveillance, environmental
monitoring, health care, building automation, etc. ([9]). WSNs are
generally composed of a large number of low-quality sensors which are
equipped with limited computation and communication capabilities
and limited energy. Therefore, many researchers are currently engaged
in developing energy-efficient algorithms for information processing
with the focus on using the quantized messages ([10]-[12]).

Different from the conventional systems, set-valued observation
systems tell us very limited information in each measurement. The
relationships between the measured signals and the input, state and
controlled output are not one-to-one, but essentially nonlinear. Iden-
tification and adaptive control methods for conventional linear and
nonlinear systems cannot be applied to such systems. New algorithms
and methods are needed to be developed for parameter identification,
adaptive control and performance analysis of the set-valued observa-
tion systems.

Some works ([1]-[3], [5], [6], [8], [13], [14]) have already been
done in parameter identification, state estimation and stabilization con-
trol. [3] and [13] gave a strongly consistent and asymptotically op-
timal parameter identification algorithm based on the periodic input
and statistical properties of the system noises. [2] proposed a method
for designing optimal periodic input to reduce the time complexity on
parameter identification. [1] discussed the linear system identification
with the colored noises based on multi-sine input signal. [14] studied
the identification of quantization systems under a class of determin-
istic persistent excitation input. Under the Gaussian assumption on the
predicted density, [5] and [6] investigated the minimum mean quare fil-
tering using the quantized innovations. [4] and [15] considered the case
where the parameters are known, and proposed a state observer and a
stabilization control.

In this technical note, we will try to attack the adaptive control
problem of set-valued observation systems. By using parameter
estimates and control inputs to adjust the thresholds, a projection
algorithm is proposed to estimate the unknown parameters, and by
certainty equivalence principle, an adaptive tracking control is con-
structively designed. Under some mild a priori information on the
unknown parameters, statistical properties of the noises and the signals
to be tracked, it is shown that the identification algorithm is both
almost surely and mean square convergent, the closed-loop system is
stable, and, the adaptive tracking control is asymptotically optimal.

For the binary-valued observation systems, compared to the param-
eter identification and the stabilization control when the parameters are
known, the adaptive control is much more difficulty. One main reason
is the inter-dependence between the adaptive control law and parameter
estimates. In existing works, the property of the identification algorithm
is guaranteed by assuming that the input is periodic and deterministic.
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However, in adaptive control, the input is required to be adjusted ac-
cording to the control objectives and parameter estimates, as a result,
is neither periodic nor deterministic. Another main reason is lacking of
efficient method to deal with the strong nonlinearity and complexity of
the stochastic processes resulted from the set-valued observations, the
estimation algorithm and the feedback.

To overcome these difficulties, we get rid of the restrictions of the
periodicity ([3]) and determinacy ([14]) on the inputs, remove the
Gaussian assumption on the predicted density ([5], [6]), and make it
feasible to develop a control-dependent online identification algorithm.
For the general set-valued observation systems, such kind of extension
is very difficult. Therefore, as the first step, we will only consider a
class of single parameter systems with binary-valued observation in
this technical note.

This technical note is organized as follows. Section II formulates the
problem. Section III gives a projection algorithm for parameter identi-
fication and a constructive method of designing adaptive control. Sec-
tion IV analyzes the performance of the closed-loop system, including
the convergence rate of the identification algorithm, the stability of the
closed-loop systems and the optimality of the adaptive control. Sec-
tion V uses a numerical example to demonstrate the effectiveness of
the algorithms and the main results obtained. Section VI gives some
concluding remarks.

II. PROBLEM FORMULATION
Consider the following first-order system:

yr = Our + di
{flk = Q(ux) M

where u;, € R, # € R and {ds,k > 1} are, respectively, the input,
unknown parameter and noise; yx € R is the controlled output, which
cannot be exactly measured but is the target signal to be regulated. y,, is
measured by a sensor whose output ¢, is binary-valued with threshold
ck, which is a design variable in this technical note. The sensor can be
represented by

1,  ifys > cp;

L @)

e = QUuk) = Iiyyne] — Llyp<e) = .
qk (yx) lyr>cr] [yr<er] { otherwise.

The purpose of this technical note is to design an adaptive control to
drive the controlled output ¥ to follow a known reference signal {y} }.
In other words, at time instant &, we will construct an adaptive con-

trol u, based on the past observations {qi,...,qk—1,U1,...,Uk—1}
to minimize the following tracking index:
Je=E(ye —yi)”. 3)

To do so, we need to consider the choice of the threshold cj, the
identification of the unknown parameter and the design of the control
law. Comparing with the conventional adaptive control ([16]), we not
only have to design the thresholds ¢, but also face the difficulty that
the observation is nonlinear and provides very limited information.

For convenience of citation, we now list the main conditions to be
used in this technical note:

Assumption 1: The prior information of 4 is that |#| € [6, ], where
8 and 6 are known constants with 8 > 6 > 0.

Assumption 2: {di,k > 1} is an independent and identically dis-
tributed (i.i.d.) stochastic sequence and d; is a normally distributed
random variable with zero mean and known covariance o2 denoted by
di ~ N(0,02).

Assumption 3: The target output {yx,k > 1} is a deterministic
signal sequence, and there are known constants y* and y* with y* >
y™ > 0 such that |y;| € [y*, §7]. B
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Fig. 1. Procedure of designing the adaptive control law.

Remark 1: Assumption 1 not only implies that the system is con-
trollable, but also tells us the controllability degree of the system (1).
Assumption 3 describes the properties of the reference signals, based
on which a control law can be designed to ensure a sufficient persistent
excitation condition for parameter estimation.

III. CONTROL LAW

We first consider the case where the parameter ¢ is known. In this
case, the control law that minimizes (3) should satisfy

yi = bur. @)

Substituting (4) into (1), we obtain yr. — y; — dr = 0, and then
Jr = E(yr — yi)? = Ed; = Edi. However, in the case where the
parameter ¢ is unknown, we need to estimate it. To do so, we propose
the following recursive projection algorithm:

A s 5 Peorug
0, =1lo {9k~—1 + 51 m%} 5)
Plg—lui
Po=P, 41— o——— 6
2 k—1 Zl—i—Pkflué (6)
Tk = [[7lk>gk—1‘“'l.»] - I[‘.’/kfélc—l‘“'k»] M

where © £ [—8. 6], initial value |do| € [f. f] and P, > 0 can be
arbitrarily chosen, 31 > 0 and 32 € (0, 1] are two real numbers. o (+)
is the projection operator, i.e., Ile(x) = argmin_ g |® — 2|, for any
z € R.

According to the certainty equivalence principle, replacing the ¢ in
(4) by its estimate ékfl, we obtain the adaptive control law y; =
fx_1ug. Since uy, cannot be well defined when f;_; = 0, we make
the following modification:

ok ) U
up = ék_lI[QSWk—l‘S 1+ [

(I[o<ék,1<@ - I[—g<ék.,1go1) :
(3)

From Section IV, it can be seen that 31 and 32 in (5)—(6) and their
ratio 1 /32 have important influence on the the convergence rate of the
parameter estimation error.

Remark 2: The design procedure of the adaptive control is shown
in Fig. 1. Firstly, calculate fot by use of gr—1 according to (5)—(7),
and u, according to (8). Secondly, use u/, to control the system and the
sensor to measure the sign of yr — ékfluk, i.e., gx. Then, repeat the
process.

IV. PERFORMANCE OF THE CLOSED-LOOP SYSTEM

Before analyzing the stability of the closed-loop system and the op-
timality of the control law (8), we first analyze the convergence of the
identification algorithm (5)—(7).

A. Convergence of the Identification Algorithm

Denote the estimation error (;k £ r — #. Notice that © is a convex-
compact set, by the property of the projection operator, we have

5 ~ P _quy
0 < 65— e —
0k] < |Ok—1 + 51 1 +Pk71U'.;2‘~qk ©)
and by (1) and (7), gx can be rewritten in the following form:
I = I[dk>uk-g)k—1] - [[dksukék—l]. (10)
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Theorem 1: For the system (1), under the conditions of Assumptions
land 2,if up € F p—1 = o(d;,1 < i < k — 1), and there exist
constants Mo> > M; > 0 such that

My < uk| < Mo (11)

then the parameter estimation error b given by the algorithm (5)—(7)
have the following properties:

Jim_ Ef; =0, (12)

lim «‘;k =0 a.s.
k—oco
Proof: By (9) we have

37 PE_yui
(14 Piu2)?

G1Pe—quy 5

62 <62+
o=kt 1+PA1

k—19k

which together with ux € F _1 renders

ﬂ%PI\?fﬂlz
(14 Pr_qu?)?

31 Pp_qjup ~
%ﬁqE[qd]k—]]

U

,51 PA~—1U%
(14 Proqu)?
131Pk_1uk ~

2
+ 1+Pk—1uz k—1

X (1 — ’_)(I)('zz,kﬁk_] )) R

E[@ﬂﬁ k—1] S'§Z—l +
+2

:éi—l +

13)

where ®(x) is the distribution function of di, ie., ®(x) =

1/V2ra [ e 2 .,
By Assumption 1 and (5), we know that
6] < 26. (14)

Let o« = 26 M. Then, by Lemma 1, there exists By = B () such that

b1 (1 - 2<I>(u,k«‘;k,1)) < —Bluzéz,l. Substituting this into
(13) results in
EfilF 1]
2p2 2 .
_ <1 —2,{311?17i +';3 )ek n (lifl}ki—_:)

Since M < |ug| < M> and (20), we have

2| g
AP
<(1-

28, By M} ~o
—1 2 191‘,,_1
M2+ P "+ B M2Z(k—1)

A | Bo M -2
3IM5 | = k-1 )
+ My <P0 + (1—j32)P0Aw1§+1( )
Therefore
-, 203, By M? -,
Ef? < <1— S L L )Eei_l
M2 4+ Pl 4 o M2(k —1)

21 2 Bo M7 (k —1) ) -
BiMy | = ' - .
oM <P0 + (1—B2)PoMZ + 1
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This together with

5 —2
Ba M2 (k—1) 2
Ji-‘[g (—+7(1—92)P0W +1) 0
231 B1 ’\12 -

— N
MZ+P] +ﬂ21\4§(k71)

and [17, Theorem 1.2.22] implies Eéi — 0. o
Noticing (1 — 2®(x)) = —2x [ (1/V2r0)e " /*7 du < 0,
Vz € R, we have

22 P2 2
/31 P;‘,_1 Uy

EfiF k] <fii+ A+ Py
— 11U

and from (20)
i [ijk 1U/k
1+ P._ 1Uk
(1
BT M3 —
<BIME Y <P0 +

k=1

BoM2(k —1) ? e
(1 - Bo)PoM3 +1 o

Thus, by [18, Lemma 1.2.2], we have that O converges almost surely
to a bounded limit. Notice that E#7 — 0. Then, there is a subsequence
of B, that converges almost surely to 0. Consequently, #. almost surely
converges to 0. O
Remark 3: Compared with the previous work, the conditions (11)
are essentially different. In the existing literature, the analysis of esti-
mation errors needs the periodicity of inputs ([3]). In fact, Theorem 1
not only removes the requirement for periodic input, but also imple-
ments the parameter identification based on feedback control. Further-
more, the adaptive control for the limited information systems becomes
possible. This is because, for the adaptive control (8), if y™ < |yj| <
g and M, = y* /8, M> = 7" /8, then conditions (11) is established.
Theorem 2: Under the conditions of Theorem 1, if 2B3 >
(Ma/M;)?, then Ef? = O(k™"), where 3 = (:i/f2 and
B =2%'(0) = 2/V270.
Proof: Since 2B3 > (My/ M;)?, by Lemma 6, there exists
m such that E67™ = o (k~'). Furthermore, by Lemma 5, we have

E6}" = o (k™'),r = 2,....m. Notice that
P,? i ui < M3
(1+ Pk*lui)z B (“f + PI:—11 )2
A2
s = M2(k—1) 2
2
(v + P+ )
=0(k™?%)
and
Py |ug| < Mo _ o),

BoMZ(k—1)

R R =

Let o = 26 M. Then, by Lemma 1 we have

E6; <Ef;_,

| e
(14 Pr_qui)?
O Pr_qup

2 o
+ 1+ P._ 1Uk

1 (1 — Q@('ukék—l))
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. 281 BPe_1u? ~s
<Ef: | —E(|ZZktlkg
S k—1 <1+PA1Lka1

P/ilu/mji

B |kt kel

+ |:(1+Pk71'uz)2

2P, _up
1+ P u'f,

m—1 27
B2V (Q) -, = om
’ (2 > i+ Bt
j=2 o

+E

~ 31BPL_1 l[;‘ 1
=E6; ,— B kg +o< )
b < 1+ Peoquj Uj >
24B (%)2 R
Sk —MZP— Efi-s
k—1+ M2
1
ro ()
and hence, by Corollary 1, we get the theorem. O

Remark 4: Theorem 2 gives us the convergence rate of the algo-
rithm (5)—(7), most importantly, describes the influence of 3, and /3
on the performance of the algorithm. This implies that 5; and 3> can
be chosen such that the convergence rate of the identification algorithm
(5)—(7) is of order 1/k, which is the same as the convergence rate of
the minimum mean square error identification algorithm for the con-
ventional system.

B. Stability and Optimality of the Closed-Loop System

Theorem 3: Consider the system (1) under the adaptive control
(5)—(8). If Assumptions 1-3 hold, then we have that
(i) the parameter estimates are strongly consistent and mean
square convergent to the real parameter: lim_. 67 = 0 as.,
limy—c B67 = 0;
(ii) the estimates have the following convergence rate E§} =

O (k") in the case of 2B > [(g*é)/(gg)]?
Proof: Noticing that ux € % _; and
0<€<|uk|<%<3€ (15)
by Theorems 1-2, one can get the theorem. O

Theorem 4: Consider the system (1) under the adaptive control
(5)—(8). If Assumptions 1-3 hold, then we have that

(i) the closed-loop system is stable: sup,~, Fyi < oc;

(i) the closed-loop system is asymptotically optimal: liny._ . .Jp =

Ed?.
Proof: By (1) and (8) we have |yx| < |dy|+5*8/8. This together
with Assumption 3 implies (i).

By Theorem 3 we have Hk 1 — fas.; andby (8), ('M 1ug—yp — 0
as.. Thus, fug — yi = (Br—rur — y}) — (B—1 — O, — 0 ass..
Furthermore, by Assumptions 3, (15) and the dominated convergence
theorem ([19, pp. 100]), we know that

E(Qur — yr)* — 0. (16)

By Assumptions 2 and (8), dj and uy, are independent. Thus, E(y;, —

) = B(Qup+di—y;)? = Bd} +E(Qur—y;)* = Edi+E(fui—
yk) . This together with (16) renders J, = E(y. — y;)? — Edi.
Hence, (ii) is true. O

V. SIMULATION

Consider the following system: y, = fuy +dx, the quantized output

information is g = I[yk>?)k_1uk] — I[ykgék_luk]’ the constant pa-
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Fig. 2. Convergence of b (solid) to the real parameter ¢ = 3 (dashed).
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Fig. 3. Sample trajectory of k(8 — 6)2.

rameter # = 3 is unknown, but its range [1, 10] is known, i.e., 8 =
1,8 = 10. The system noise {d, %k > 1} satisfies Assumption 2 with
g = 0.1.
Our control purpose is to track the signal y,
Design the following control law:
15

ue =15, 1<i0)
9 1 - -

15
T (o<t yent = oo,y <01)

= 15.

a7

where 6, is given by (5)—(7) with initial value fo = Py = 1. Let
1 =10and 32 = 0.1. Then, we have 2B3 > [(5°6)/(y*6)]”. Thus,
according to Theorem 3, we know that
bp 50 =3,E(6, —6)> =0 <%) CE(yr — y3)* — Ed:.
Let us look at the effectiveness of parameter estimates and tracking
from a trajectory.
1) Convergence of the parameter estimates
Fig. 2 shows the convergence of parameter estimates within 1000
steps. Though there is a larger estimation error at the beginning,
the estimates eventually converge to the true value.
ii) Convergence rate of parameter estimates
Fig. 3 describes a trajectory of k(A — #)2. We can see that this
trajectory is bounded, and hence, (6, — 6)? = O(1/k).
iii) Tracking performance of the closed-loop system
Fig. 4 shows a trajectory of ¥z . We can see that the system output
fluctuates around y; = 15 under the control (17). The fluctua-
tion is due to the system noise.
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Fig. 4. Tacking performance of ¥, (solid) to y* = 15 (dashed).

VI. CONCLUSION

In this technical note, taking a class of simple linear systems as an
example, we made a first step towards the quantitative study of the
adaptive control of set-valued observation systems. We proposed a pro-
jection algorithms to estimate the unknown parameter, used the pa-
rameter estimates and control inputs to adjust the observation thresh-
olds and designed the control law. Under some mild conditions on the
a priori knowledge of the unknown parameters, statistical properties
of the system noises and reference signals, we proved the stability
of the closed-loop system and the asymptotical optimality of adap-
tive tracking, and obtained the convergence rate of identification algo-
rithms. By a numerical example, we also demonstrated the efficiency
of the algorithms. From this work, we can imagine that the study on
the adaptive control of general set-valued observation systems is more
challenging.

APPENDIX

Lemma 1: Assume that « is a positive real number. Then, for
any given positive integer m, there exists By, = By, («) such that the
following inequality holds for all = € [—a, ]:

m—1 (I)(Qj_l) (0)

25 D) 2m ¢ 2
Gy Bea™ < 2(28(x) ~1) < Ba

j=1

especially, when m = 1, we can take B,, = B; = 1/a, where
®(x) =1/V270 [* ¢™/29% Jy and B = 28'(0) = 2//270.

Proof: Since the functions involved in the inequality are all even,
we need only to consider the case of « € [0, a].

We fist prove the second inequality. Let 0 (.L) = Bx—(2®(x)—-1).
Then y (¢) = B — 2®'(x) = B— Be ™" /27" > 0,Vx € [0, a], and
hence, 31 (x) > ¢1(0) = 0, or equivalently, z(2®(z) — 1) < Ba?,
Yz € [0,q].

Next we prove the first inequality. Let y2(v) = 2&(x) — 1 —
x/c. Then y' (&) = —Bo 2xe /27 <0, Va € [0, a]. Noticing
y2(0) = y2(a) = 0, we have z/a < 2®(z) — 1, Vx € [0, a]. Thus,
when m = 1, the first inequality is true.

Forr > 1, we do the Taylor’s expansion for 2(2®(x)—1) on [0, o]:

ey

2(28(x)— 1) =2 Z ST
@(2777—1)(()) 2 @(2777)(51,) -
TEm-1 " “amy v CE (0,1).
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Let BY = 11[1in] {Q(Q'")(E.r);r}. Then, DB, =
€0,

282 m=D(0)/(2m — 1)l + ZBSI/(Zm)!} can make the in-

equality hold. O

Lemma 2: For any givena € {z:2 € R,z # —1,-2,...} and

A € R, we have

&
A 1
H(l_j—l-a,)_o(k))’ k= o0

j=1

Proof: From

jia):exp{glog<
ol £33

=O(exp{—X-logk}) =

(-

j=1

we have the lemma. O

Lemma 3: Foranya € {z : * € R,x # —1,-2,...} and
6 > 0, we have
) O(25), A=1+¢4;
— 1 ..
Z H < ),m O (). A>1+8 (19
J=11=j+1 ‘ O(&), else.
Proof: From
ko k A 1
Z Hl:j-H (1 - l+a,) R
Jj=1 1
L&
&%
one can easily get (18). O

Corollary 1: Suppose that {x;, k > 1} is a sequence of real
numbers such that for all sufficiently large n

A Iz
s (- ) e+

wherea € {z: 2 € R,x # —1,-2,...},A > 0,86 > 0. Then
O(Zx)- 0<A<1+6;
o= 0 (GE%), A=1+8

O (). A>1+6.

Corollary 2: Suppose that {xx, k > 1} is a sequence of real
numbers such that for all sufficiently large n

A 1
RS (1— ﬁ) Tk to (W)

wherea € {z : v € R,z # —1,-2,..
= o (k" 0+8

oA > 146,686 > 0. Then
T
Lemma 4: 1If there exists constants M > M; > 0 such that (11)
holds, then P, have the following properties:
i) P' has a recursive form:

Baui
(1 — /jz)Pk_lui +1

Prl=p + (19)
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ii) for any initial value I > 0

1 —1
4 B M2k
<PO + o B >

1 3o M7 !
<P.<|= : ; 2
= k= <P0 (1= )R MZ+1 : (20)
0< Piyy < Py and klim P, =0. 21
Proof:
i) By (6) we have
B2 Pr_yu} Py
1+Pk711li Pk71 ( )
From (1 + B2 Pyuiup /14 (1 = Ba)Poyui)
(I — BePiqui/l+ Pe_yui) = 1, it follows
1 + ,ngk,ﬂti/l + (1 — ,432)Pk71ui = Pkfl/Pk.

Thus, (19) holds.

ii) For any initial value Py > 0, by 82 € (0,1) and (22)
we have 0 < Pry1 < Pg. Noticing (11), we can get
BoMT /(1= B2)PoME 4+ 1 < Boui/(1 = B2)Pacqui +1 <
(B2 M3 . This together with (19) implies (20). Furthermore,
limg oo P, = 0. O
Lemma 5: Under the conditions of Theorem 1, if 26B >

(Mo/My)? and EG?™ = o (k~") hold for some positive integer

m > 2, then
EO7 =o(k™h), 2<r<m. (23)
Proof: From (14), |qx| < 1 and
Pp_1|ugl < M, _ O(kfl)

14 Peoiu? = 40 —1 B2 M3 (k1)
=t MP4 P+ (17/32)1P0A’\/122+1
letting o = 20M,, by (9), (20) and Lemma 1, we have

A2(m—1 A2(m—1 1
B2 Y <Y 4 <L—2)

2(m — 1)1 Pr_yuy, G2lm=1)=1

FE -
+ ].—l—Pk_lui k=1

x (1 _ 2@(1Lk§k,1))

Mo

2
2(m — 1)3B (Ml)
1—
- gy (ME+pe )
P

X BG4, (Li) .

Consequently, by Corollary 2, we can get E(;i(m_l) =o0(1/k). Sim-
ilarly, by repeating this process, we can prove that (23) holds for all
r=2,...,m. O
Lemma 6: Under the conditions of Theorem 1, if m is a posi-
tive integer satisfying m > M3 /23, By M}, then we have Eéi'" =
o (k).
Proof: Letting o =
B () such that

20M>, by Lemma 1, there exists By =

upbr— (1 - 2<I>(’ukék—1)) < —Biuibi_,.
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Similar to the proof of Lemma 5, we have
E§™ <E6” + o0 (k7?)

21’)’?,31 Pkfl'uk n2m—1

E{ ———b;
+ 1+Pk_111'f, k=1
X (1 — 2@(uk9~k_1))
) J B My 2
2mp3 By (—) B
<|1- (ngﬂ) B4y,
SN
1
+o0 w2 )
This together with Corollary 2 implies E g2m = o(k™). g
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